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Resumen—In this contribution we present the activation
of directed ensembles of neurons using controlled
synchronization. A network of neurons in a resting
state is activated and a prescribed pattern is imposed on
the network. Some nodes in the network are connected only
in one direction and some others are bidirectional. The
idea is to induce or to impose a desired behavior on the
network aplling a control action to at least node, such that
the network reproduces a regular spiking-bursting behavior.
We propose a nonlinear controller to control one neuron in
the network and then by means of this controlled neuron
and the coupling strength the synchronization of the network
is achieved. A numerical simulation is presented in order
to illustrate the controlled synchronization of a Scale-Free
network of Hindmarsh-Rose neurons.

Keywords: Neuron Controlled
Synchronization.
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I. INTRODUCTION

A complex network is a collection of dynamical systems
connected by a coupling strength. Its study has attracted
a lot of attention for many interesting problems and ap-
plication in real world, see for wide reviews (Albert and
Barabasi, 2002), (Wang and Chen, 2003) and (Boccaletti
et.al., 2006). Real problems can be seen as a network model
for instance in biological systems, electronic circuits, social
communities, diseases spreading, neural systems, etc. Com-
plex networks present many challenges, for example the
problem of synchronization of networks with nonidentical
nodes, which means that the systems in nodes are strictly
different; dynamic topology can be seen as the structural
change of the network along the time; the growth dynamics
concerns on how the network increases or reduces the num-
ber of nodes; synchronization of the network in a chaotic
attractor (Strogatz, 2001). Recently it has been reported that
a network with nonidentical nodes can be synchronized in
a chaotic attractor, however, a modification of the coupling
equation was required in order to obtain the synchronous
behavior (Perales et.al., 2009). Other interesting point in
synchronization is that the network behavior is a result of
the collective dynamics, the coupling strength, the network
topology and the complexity in the nodes. In this sense, in
terms of neuron networks there is no feasible information
about the topology and the interconnection of neurons.
Thus, a question arises, Can be induced a desired behavior
into a synchronized complex network?. An approach can

be obtained from controlling some nodes, this is, some
nodes are forced to track a prescribed reference such that
the synchronous behavior of the network also tracks such a
reference.

Dynamical networks can be used to represent real-world
biological systems including ensembles of cells in which
the most significant phenomenon is the activation of the
membrane potential of the neuron (Widmaier et.al., 2007).
The activity of neurons is characterized by spiking-bursting
behavior of the membrane potential, this behavior is respon-
sible for the transmission and processing of information.
It is known that in living organisms this transmission of
information can failed due to malfunction of the synapses
between some neurons. In such a case the global behavior
of the ensemble tends to a resting behavior, even if some
neurons in the ensemble behaves in an appropriate way,
however, the inhibited neurons inhibit the global behavior.
An approach to activate theses neurons is to consider the
induction of a proper dynamics provided by an artificial
neuron in the ensemble by means of controlling some
neurons. In this way it is possible to activate the synchrony
and the coordinated operation of the biological network.
The artificial neuron can be seen as a synchrony controller
that imposes an activation pattern in the ensemble of live
neuron that are in inhibit operation (Pinto et.al., 2000).

In this contribution we begin with a simplified model
of neurons interconnected forming a network with a given
topology and with some of the elements in the network
inhibited such that the ensemble behavior is almost inhibit-
ed. Then we construct a feedback control system acting
on one neuron, thus the controller induces the desired
behavior to the controlled neuron, such behavior could
be given by an artificial neuron. The general idea is to
design a nonlinear controller to stabilize the synchroniza-
tion error system obtained from the controlled and the
reference node. The synchronization error is stabilizes at
the origin such that the trajectories of the controlled node
tracks the reference trajectories. The controller is obtained
from a diffeomorphic transformation and exploiting the
controllability and observability for nonlinear systems. The
Transformation is such that the synchronization error system
is transformed into a fully or partially linearizable system
via feedback. Therefore, the control law is obtained via
the Lie derivatives of the output functions along the vector
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fields of the synchronization error system. The controller
obtained is applied to one or several nodes in the network
in order to activate the ensemble. As was mentioned above
the topology and the connections between neurons in a
real network is not clear, therefore we consider a scale-free
network (Barabasi et.al., 2001), the aim of use this kind of
network is that they are very close to model real processes,
for instances the sexual contacts in a social network is
modeled as a scale-free network (Cubukcu et.al., 2003), also
the World Wide Web is modeled as a scale-free network
(Albert et.al., 1999). Therefore, we assume that the neuron
ensemble are represented as a complex scale-free network.

The rest of the manuscript is organized as follows: Sec-
tion 2 describes the problem of the activation of inhibited
neural networks; Section 3 presents the results on the
activation controller; in Section 4 simulation results are
provided and finally Section 5 closes the contribution with
concluding comments.

II. PROBLEM DESCRIPTION
II-A. Model of a Single Neuron

In our analysis each node in the network is a neuron
having a description given by the (HR) model:

Ti1 = aT+ ﬁa‘ll yad — dxs + I;
Lo = €— 5:531 — (44 )
i3 = n(—xi3+ S(ﬂm +h))
Tia = 9(—19$i4 + L(LL'Z'Q + Ii))
where z; = (21,22, 243, 74) € R are the state

variables of the i-th neuron; with x; ; being the membrane
potential, x; o is the fast current in the ion dynamics, z; 3
is the slow current whether 7 < 1 and x; 4 represents an
even slower dynamics with § < 1 < 1 to model the calcium
exchange between the intracellular stores and the cytoplasm.
The model parameters are chosen in such manner that
some neurons reproduce spiking-bursting activity, whereas
for few neurons the parameter « is chosen in such a way
that the corresponding neurons are in an inhibitory state. In
Figure 1a) a spiking-bursting activity is shown, this behavior
is the desired to be imposed into the entire ensemble, Figure
1b) illustrates the inhibited behavior, we consider that in
the ensemble some neurons are in this regime. In order to
obtain an inhibitory state of the neuron model we assume
the parameter a@ < 1, thus the fast current influence in
the neuron is diminished and the spiking-bursting regime
is reduced or inhibited and the operation of the neurons
become a fixed point as presented in Figure 1b).

II-B. Ensemble Description

We consider that the neurons are coupled via their
electrical activity (represented by I; + I;*) which from the
sequel we consider that it is the unique way to connect or
communicate with other neurons in the ensemble and I}* is
the current entering to the ¢-th neuron which comes from
the neurons connected to the neuron. Therefore, the neuron
i-th transmits its current x;; to the neuron jth via the I}
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Figura 1. Inhibited neuron using the HR model parameter, it is stabilized
at an equilibrium.

current entering. To this end, a network or ensemble with
N linearly coupled identical neurons with model given by
1 will have a state description given by

i = F(r;) + I 2

for ¢ = N where I = CZ;\[:l a;;lx;, x; are
the state variables for the ¢-th neuron of the ensemble or
node of the network; F' : R* — R* is the HR smooth
vector field representing the dynamics of the ith neuron,
I’ = diag[1,0,0,0] is the matrix which determines which
states in nodes are connected and A = {a;; } is the coupling
matrix describing the connectivity of the ensemble. The
ensemble considered in this contribution is a scale-free
networks, where few nodes are highly connected whereas
most of the nodes posses few connections as illustrated in
Figure 2.

We have considered two sets of neurons, one for the
inhibited and the other for the spiking-bursting neurons,
where 21 neurons are active whereas, only 9 neurons are
inhibited. The behavior in the network is shown in Figure 3.
The neurons were connected at time ¢t = 2000sec. and the
behavior is clearly synchronized at an equilibrium, in other
words, the active neurons instead of activated the resting
neurons, they follow the inactive behavior.

Therefore, we look for an answer to the question stated in
the Introduction, which can be treated as a control problem.
Thus, we propose to design a controller u, such that the
entire controlled network (2) be activated via the induction
of the desired behavior wg.f1, such a control action is
injected in some neurons, such that the resulting dynamics
of the network be synchronous with the reference neuron.



o & > -
e (=
Ez Congreso Anual 2010 de la Asociaciéon de México de Control Automatico. Puerto Vallarta, Jalisco, México. AMCA

AT A\ SN ORALS
e N 0e
IS K B

i
Nz % Y/
4"’ N\ X n‘!
NS
SO 4

b/ S e N
A
L A\ A
(i ana
',A‘/Ali
RN,

D
e

e\

Figura 2. Scale - Free network considered for the ensemble of HR neurons.
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Figura 3. Synchronous behavior of the ensemble in inhibit regime.

III. IMPOSING AN ACTIVATION PATTERN VIA
CONTROLLED SYNCHRONIZATION

The main idea is to control at least one neuron, therefore,
without lost of generality, we consider that the controller is
applied to the first & < N neurons in the ensemble, then
the controlled network becomes

Tref = F(Tres)
i = F(xr) + 3,2 agjTzy + Buy, (3)
T; = F([L‘l) + CZ;\le ai;l'x;

where zg.r is the state vector of the reference neuron,
k = 1,2,---, N, is the number of controlled neurons.
The reference neuron is not influenced by the rest of the
neurons, B is the input control vector to the controlled
neuron, ay; are the links between the controlled neurons
and the rest of the neurons in the ensemble, and wy is
the control action applied to induce the behavior of the
reference neuron. The parameters that can be designed are ¢
and the control gains of the control actions uy, for simplicity
we shall consider that the links between nodes are equal to
the unity. Therefore, we have to design the coupling strength
and the control parameters in the controller such that the
network synchronizes to the reference neuron zg.y.

III-A.  Controller Design

The induction of a synchronous behavior in the network
can be achieved by stabilizing a dynamical system which
represents the error dynamics between the reference neuron
and the controlled neuron. The synchronous behavior in
the network is obtained since the non controlled nodes
are linked to the controlled one and by means of the
coupling strength. Let us define from eq.(3) the following
synchronization error system for the kth controlled neuron
and the ensemble neurons, with X, = Tres — Tk

Xk = OkXk,2 + BrXha — VeXe1 — OkTi,s + Ale+
k1 (TRefs Xy Ti) — U

Xk,2 = Aép — Aé‘kxi,l — Xk,2 — CeXk,a + ©k,2(TRes, Xk)

Xk3 = Mk(=Xk,3 + Sk(Xk,1 — 1k)) + ©k,3(TRef, Xk)

Xt,a = Ok (—9kXE,a + k(X2 — k1)) + ©r,a(TRer, X&)

Yk = Xk,1 = TRef,1 — Tk,1

T; :F(mi)—f—c(Z;\;la”ij) fori=k+1,---,N

C))

Note that in this new representation the problem reduces
to stabilize the error system at the origin. It is important
to stress that in the error system the influence of the
non controlled nodes in the network are considered in
©k,1(TRe £, Xk, Z;), therefore, the control command has to
compensate them in order to stabilize the error system. Now
to determine a stabilizing controller from eq.(4) we first
determine the relative degree (Isidori, 1989), from where
we found that

Lp, h(xx1) =1
Lrh(Xk,1) = arXr,2 + ka%,l - ’mxi,l — OkXk,3 + Alk+
@k,l(xR€f7 X 1’1)
(5)

without loss of generality, we propose a diffeomorphic
transformation given by ®(x) = [Xk.1, Xk25 Xk,35 Xk,4] -
which is an invertible diffeomorphic transformation since
the Jacobian matrix is invertible at the point x° of the
domain, thus the transformed system is given by

21 = LFh(q)_l(Zk)) + LBkh(i)_l(zk))uk

Zr2 = Aex — enziy — 26,2 — Cozia + Pr2(To, 2k, Ti)

Zk,3 = M(—2k,3 + Sk(2k,1 + pk)) + r,3(To, 2k, i) (6)
Zra = Ok (—rzr,a + lk(2r,2 + ki) + @r,a(To, 2k, Ts)

Y= Zk,1
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thus from the transformed system one can propose a stabi-
lizing controller as follows

1

= Taie ) L

Y(zk)) + K (2r1 — 27))
@)

where z* = 0 is the stabilizing point, note that the controller
requires the function Lph(®~!(z;)) which represents the
dynamics of the system and also contains the deviations of
the linked states of the network.

To study the stability of the synchronization error system
we obtain the internal dynamics which is given by

Uk

Xk,2 = (€k,M — €k,8) + Ek,SXha — Xk,2 — Ch1 Xk 4—
k2(TRef, X, Ti)

Xk,3 = Mk, s (—Xk,3 + Sk,5(Xk,1 + hi,s))+ ®)
©k,3(TRef, X, Ti)

Xka = Ok, 5(—0%,5Xk,4 + lk,s(Xk,2 + Kk,5))+
0a(TRef, X> Ti)

where the discrepancy functions ¢y, ; are given by

k2 = —(erM — k,8)TT pr — ERST1M Xk, 1—
(Ck,m — Cr,5)Ta, M
0,3 = (M, — Mk,5) (=230 + (Sk,mr — Sk,s)(w1,m+ ©)
(he,pr — hi,s5)))
V4 = (Ok,p — Ok,5)(— (e, — V,5)Ta, 0+
(le,mr — li,s)(x2,m + (K, — Kk,s)))
on the one hand, we consider that the unique parameters
which are considered different are the parameters o and
the current I, therefore the discrepancy functions are zero,
except o which depends on )i 1. On the other hand,
the controller (7) stabilizes the state xx 1 — 0 as t — 0,
therefore, the zero dynamics is given by
Xk,2 = —Xk,2 — Ck,1Xk,4
Xk,3 = Nk, 5 (—X&,3 + Sk,5(Xk,1 + hi,s))
Xt,a = Ok, 5(—=0k,5Xk,4 + lk,5(Xk,2 + Kk,5))

10)

it is clear that the zero dynamics is bounded and there-
fore, the synchronization error system is stabilized at the
origin. This implies that each neuron in the ensemble are
synchronous with the reference neuron. In this way the
controlled nodes tracks the reference signal compensating
the inputs given by the non controlled nodes in the network,
such that, the controlled nodes impose the desired behavior
into the other nodes.

IV. SIMULATION RESULTS

With the previous statements we consider the network
arrangement illustrated in Figure 2 with N = 30. Now we
consider that only one node is being controlled.

The parameters for the neurons in the nodes are b = 3;
c=1,d =099 I = 0, e = 1,01; f = 5,0128;
g = 0,0278; m = 0,0021; s = 3,966; h = 1,605;
v = 0,0009; £ = 0,9573; r = 3,0; I = 1,619; except
for the parameter a where we consider several values in
order to obtain inhibitory behavior in the nodes. Note that
the current [ is equal to zero except in the reference neuron.

As was illustrated in Figure 3, the ensemble is syn-
chronous in an inhibited behavior. The idea is to induce

X1
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Figura 4. Activation of the inhibit neuron via control of one neuron.

the desired behavior into the ensemble by controlling one
neuron. The controller is connected to the controlled neuron
for ¢ > 3000sec. Clearly, the ensemble is reactivated,
and the spiking-Bursting behavior is imposed in the whole
ensemble. The control gain was K = 10 and the coupling
strength ¢ = 10, the dynamic of the network is illustrated
in Figure 4. It is observed that the controller activates
the behavior in the network, and for the effect of the
coupling between nodes the network synchronizes to the
reference neuron, which is the main contribution. There
are two aspects that should be mention, the first concerns
with the control gain such that the controlled neuron is
forced to track the reference signal in such a way that the
controlled neuron behavior is induced to the network. The
second aspect is related to the coupling and the topology of
the network, as one can observe, the controlled neuron is
capable to control the ensemble with the coupling strength,
this is, as smaller the coupling strength as bigger the control
gains of the controller. Therefore, there exists a compromise
between the control gains and the coupling strength.

V. CONCLUSION

In this contribution we present the induction of a desired
behavior into a scale-free network of inhibited neurons. The
idea was to design a nonlinear controller to induce into some
neurons the desired behavior and then by the effect of the
interconnection of the network, it is induced the reference
behavior to the entire network. We corroborate that an en-
semble of inhibited neuron can be reactivated via controlling
some nodes and a reference neuron which in practical terms
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could be an electronic circuit. The result is somewhat con-
servative since the controller requires information about the
systems in the network, therefore an adaptive scheme can
be designed to improve the performance. Also we illustrate
that a synchronized network can be re-synchronized into a
different synchronization manifold which can be established
a priori.
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